BAROCLINIC INSTABILITY
IN DIFFERENTIALLY ROTATING STARS

Leonid Kitchatinov kit@iszf.irk.ru

Origin of the baroclinic instability
Eigenvalue equations
Excitation of r- and g- modes
The effect of composition gradient
Helicity and possibility of dynamos
Is it observable?
Hydrodynamical equilibrium in rotating star

Equilibrium condition:

\[\frac{1}{\rho} \nabla P = g^* \]

\[g^* = g + r \sin \theta \Omega \text{e}_\phi \times \Omega \]

\[\sin \theta \frac{\partial \Omega^2}{\partial z} = -\frac{1}{\rho^2} (\nabla \rho \times \nabla P)_\phi = \frac{1}{c_p} (\nabla s \times g^*)_\phi \]

Barotropic stratification

Sufficiently large differential rotation, \(\Delta \Omega \sim 0.1\Omega \), can be unstable (Watson 1981; Dziembowski & Kosovichev 1987; Charbonneau et al. 1999; ...)

Baroclinic stratification

The “stable” stratification - if baroclinic - can provoke an instability (Shibahashi 1980; Tassoul & Tassoul 1983; ...)

\[V = e_\phi r \sin \theta \Omega \]
Basic assumptions/approximations

- Shellular rotation
\[\Omega(r), \quad q = -\frac{r \, d\Omega}{\Omega \, dr} \]

- Disturbances are global in horizontal dimensions but short-scaled in radius
\[\mathbf{u}, \mathcal{S} \sim \exp(-i\omega t + im\phi + ikr) \]
\[\mu = \cos \theta \]

- Non-compressive disturbances but entropy perturbations due to radial displacements are allowed (Boussinesq approximation)

- Scalar potentials are used to specify toroidal (W) and poloidal (V) parts of the flow:
\[\mathbf{u} = \frac{e_\phi}{r^2} (\hat{L} W) - \frac{e_\theta}{r} \left(\frac{1}{\sin \theta} \frac{\partial W}{\partial \phi} + \frac{\partial^2 V}{\partial r \partial \phi} \right) + \frac{e_\phi}{r} \left(\frac{\partial W}{\partial \theta} - \frac{1}{\sin \theta} \frac{\partial^2 V}{\partial r \partial \phi} \right) \]
\[\hat{L} = \frac{\partial}{\partial \mu} (1 - \mu^2) \frac{\partial}{\partial \mu} + \frac{1}{1 - \mu^2} \frac{\partial^2}{\partial \phi^2} \]

Equations of linear stability (eigenvalue) problem

- Toroidal flow
\[\hat{\omega}(\hat{L} W) = -i\frac{\epsilon_\nu}{\lambda^2} (\hat{L} W) + 2mW - 2\mu(\hat{L} V) - 2(1 - \mu^2) \frac{\partial V}{\partial \mu} \]

- Poloidal flow
\[\hat{\omega}(\hat{L} V) = -i\frac{\epsilon_\nu}{\lambda^2} (\hat{L} V) - \lambda^2 (\hat{L} S) + 2mV - 2\mu(\hat{L} W) - 2(1 - \mu^2) \frac{\partial W}{\partial \mu} \]

- Entropy
\[\hat{\omega} S = -i\frac{\epsilon_\nu}{\lambda^2} S + \hat{L} V + \frac{Q}{\lambda} \left(mW - (1 - \mu^2) \frac{\partial V}{\partial \mu} \right) \]

Two governing parameters:
\[\lambda = \frac{N}{\Omega kr}, \quad Q = 2q \frac{\Omega}{N} \]

Normalized diffusivities: \[\epsilon_\chi = 10^{-4}, \quad \epsilon_\nu = 2 \times 10^{-10} \]
Symmetry properties

Equator-symmetric Sm-modes

\[V(\mu) = V(-\mu) \]
\[W(\mu) = -W(-\mu) \]
\[S(\mu) = S(-\mu) \]

Equator-antisymmetric Am-modes

\[V(\mu) = -V(-\mu) \]
\[W(\mu) = W(-\mu) \]
\[S(\mu) = -S(-\mu) \]

Eigenvalue equations are symmetric under the transformation:

\[(q, m, \omega, W, V, S) \rightarrow (-q, -m, -\omega^*, -W^*, V^*, -S^*) \]

Unstable modes are expected to possess kinetic helicity

\[H_{rel} = \langle u \cdot (\nabla \times u) \rangle / (k \bar{u}^2) \]

\[\langle X \rangle = \frac{1}{2\pi} \int X d\phi, \quad \bar{u}^2 = \frac{1}{2} \int \langle u^2 \rangle d\mu \]
Two modes of stable oscillations
(uniform rotation, zero diffusion, $N >> \Omega$)

Toroidal r-modes

\[\omega^r_{lm} = -\frac{2m\Omega}{l(l+1)} \]

Poloidal g-modes

\[\omega^g_{lm} = \pm \frac{N}{kr} \sqrt{l(l+1)} \]
Stability map

\[\frac{S u_r}{\sqrt{u_r^2 S^2}} > 0 \] for all unstable modes
Baroclinic instability as a stability loss to excitation of r- and g-modes

Parameters of unstable disturbances for $\lambda = 3$ and $Q = 10^{-3}$.

<table>
<thead>
<tr>
<th>Mode</th>
<th>γ, 10^{-4}</th>
<th>$R(\tilde{\omega})$</th>
<th>$\tilde{\omega}^r$</th>
<th>$\tilde{\omega}^g$</th>
<th>$\overline{u_p^2/u_t^2}$</th>
<th>$\overline{S u_r}/\sqrt{u_t^2} S^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>8.41</td>
<td>4.34</td>
<td>4.24</td>
<td>24.0</td>
<td>3.35×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>2.91</td>
<td>7.27</td>
<td>7.35</td>
<td>43.0</td>
<td>6.38×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>1.14</td>
<td>-13.6</td>
<td>-13.4</td>
<td>171</td>
<td>1.38×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>0.709</td>
<td>-34.6</td>
<td>-34.5</td>
<td>2487</td>
<td>3.32×10^{-7}</td>
<td></td>
</tr>
<tr>
<td>A-1</td>
<td>2.04</td>
<td>0.989</td>
<td>1</td>
<td>1.99×10^{-4}</td>
<td>2.99×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td>1.46</td>
<td>0.199</td>
<td>0.2*</td>
<td>9.62×10^{-7}</td>
<td>2.17×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>A-10</td>
<td>0.507</td>
<td>0.0952</td>
<td>0.0952*</td>
<td>2.79×10^{-9}</td>
<td>0.155</td>
<td></td>
</tr>
<tr>
<td>S0</td>
<td>3.29</td>
<td>7.46</td>
<td>7.35</td>
<td>32.7</td>
<td>7.46×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>4.93</td>
<td>-4.85</td>
<td>-4.24</td>
<td>34.6</td>
<td>2.17×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>3.10</td>
<td>-10.7</td>
<td>-10.4</td>
<td>260</td>
<td>4.90×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>1.03</td>
<td>-31.5</td>
<td>-31.5</td>
<td>5727</td>
<td>5.24×10^{-7}</td>
<td></td>
</tr>
<tr>
<td>S-1</td>
<td>2.94</td>
<td>0.320</td>
<td>0.333</td>
<td>1.93×10^{-4}</td>
<td>3.67×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>S-3</td>
<td>2.22</td>
<td>-10.2</td>
<td>-10.4</td>
<td>265</td>
<td>3.35×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>S-10</td>
<td>0.874</td>
<td>-31.4</td>
<td>-31.5</td>
<td>5772</td>
<td>4.44×10^{-7}</td>
<td></td>
</tr>
</tbody>
</table>

Kinetic energy of disturbances is the sum of energies of their toroidal and poloidal parts:

$$\overline{u^2} = \overline{u_p^2} + \overline{u_t^2} = \frac{1}{4} \sum_l l(l + 1) (|V_l|^2 + |W_l|^2)$$
Growth rates

\[\frac{N}{(\Omega r k)} = 3 \]

\[2q \Omega / N = 0.001 \]
Dependence on the thermal diffusivity

\[\frac{N}{(\Omega r k)} = 3 \]

The lines are marked by the values of (normalized) thermal conductivity

Composition stratification changes the effective buoyancy frequency:

\[N^2 \rightarrow N_{\text{eff}}^2 = N^2 + N_{\mu}^2 , \]

\[N_{\mu}^2 = -\frac{g \, d\mu}{\mu \, dr} \]
Eigenmodes

\(\hat{\lambda} = 3, \quad Q = 0.001 \)

Toroidal \(r \)-mode A-1

\[
\frac{\bar{u}_D^2}{\bar{u}_T^2} = 2 \times 10^{-4}, \quad \frac{\bar{S}_{ur}}{\sqrt{\bar{u}_r^2 S^2}} = 3 \times 10^{-3}
\]

Poloidal \(g \)-mode A1

\[
\frac{\bar{u}_D^2}{\bar{u}_T^2} = 43, \quad \frac{\bar{S}_{ur}}{\sqrt{\bar{u}_r^2 S^2}} = 6.4 \times 10^{-6}
\]

![Toroidal Flow Stream Lines](image1)

![Radial Velocity](image2)

![Entropy](image3)

![Toroidal Flow Stream Lines](image4)

![Radial Velocity](image5)

![Entropy](image6)
Possibility of dynamos

$$H_{\text{rel}} = \frac{\langle u \cdot (\nabla \times u) \rangle}{k u^2}$$

Alecian et al. (2013) observed rapid (~10 yrs) changes in global magnetic field of Herbig star HD 190073.
Even a very small radial differential rotation can provoke baroclinic instability in stellar radiation zones.

The instability can be understood as stability loss to excitation of r- and g-modes of global oscillations.

The unstable disturbances are helical. Turbulence resulting from the instability can be prone to dynamos.