Non-Dissipative Saturation of the Magneto-Rotational Instability

M. Mond1, E. Liverts1, Y. Shtemler1
O.M. Umurhan2, D. Bisikalo3

1Ben-Gurion University, Israel
2University of California Merced, USA
3Institute of Astronomy of the Russian Academy of Science, Moscow
1 Introduction

2 The Reduced MHD Equations
 - The Thin Disk Approximation
 - The Reduced Equations

3 The Linear Problem
 - The Alfvén-Coriolis System
 - The Magnetosonic System

4 Weakly Nonlinear Analysis
 - The Amplitude Equation
 - Results

5 Summary
Accretion Disks

- Turbulence needed to account for angular momentum transfer outwards and excess in infra red radiation.
- What is the source of turbulence in accretion disks?
Accretion Disks

- Turbulence needed to account for angular momentum transfer outwards and excess in infra red radiation.
- What is the source of turbulence in accretion disks?
Accretion Disks

- Turbulence needed to account for angular momentum transfer outwards and excess in infra red radiation.
- What is the source of turbulence in accretion disks?
The Magnetorotational Instability (MRI)

MRI Wave Pattern

- Keplerian rotation.
- Infinite cylinder.
- Axisymmetric perturbations.

Alfvén-Coriolis waves

MRI

Alfvén waves (no rotation)

Coriolis (epicyclic) oscillations
Dissipative Saturation

- Magnetorotational Instability (MRI) [Velikhov (1959), Chandrasekhar (1960)]. Reintroduced by Balbus and Hawley (1991) as a major source of turbulence in thin astrophysical disks.

- Knobloch and Julien (2005) demonstrated saturation of the MRI far from threshold in infinite axially uniform cylindrical plasmas with rigid walls.

- Umurhan et al. (2007) employed the shearing box description in order to show that near threshold the MRI saturation level decreases with the magnetic Prandtl number.

\[A_s \to \sqrt{P_m}, \quad P_m \to 0 : \quad \dot{L} \to 1/Re, \quad Re \to \infty \]

- We consider a new dynamical process: non-dissipative saturation in axially stratified thin disks.
Dissipative Saturation

- Magnetorotational Instability (MRI) [Velikhov (1959), Chandrasekhar (1960)]. Reintroduced by Balbus and Hawley (1991) as a major source of turbulence in thin astrophysical disks.

- Knobloch and Julien (2005) demonstrated saturation of the MRI far from threshold in infinite axially uniform cylindrical plasmas with rigid walls.

- Umurhan et al. (2007) employed the shearing box description in order to show that near threshold the MRI saturation level decreases with the magnetic Prandtl number.

\[A_s \to \sqrt{P_m}, \quad P_m \to 0 : \quad \dot{L} \to 1/Re, \quad Re \to \infty \]

- We consider a new dynamical process: non-dissipative saturation in axially stratified thin disks.
Dissipative Saturation

- Magnetorotational Instability (MRI) [Velikhov (1959), Chandrasekhar (1960)]. Reintroduced by Balbus and Hawley (1991) as a major source of turbulence in thin astrophysical disks.

- Knobloch and Julien (2005) demonstrated saturation of the MRI far from threshold in infinite axially uniform cylindrical plasmas with rigid walls.

- Umurhan et al. (2007) employed the shearing box description in order to show that near threshold the MRI saturation level decreases with the magnetic Prandtl number.

\[A_s \to \sqrt{P_m}, \quad P_m \to 0 : \quad \dot{L} \to 1/Re, \quad Re \to \infty \]

- We consider a new dynamical process: non-dissipative saturation in axially stratified thin disks.
Introduction
The Reduced MHD Equations
The Linear Problem
Weakly Nonlinear Analysis
Summary

Dissipative Saturation

- Magnetorotational Instability (MRI) [Velikhov (1959), Chandrasekhar (1960)]. Reintroduced by Balbus and Hawley (1991) as a major source of turbulence in thin astrophysical disks.

- Knobloch and Julien (2005) demonstrated saturation of the MRI far from threshold in infinite axially uniform cylindrical plasmas with rigid walls.

- Umurhan et al. (2007) employed the shearing box description in order to show that near threshold the MRI saturation level decreases with the magnetic Prandtl number.

\[A_s \to \sqrt{P_m}, \quad P_m \to 0 : \quad \dot{L} \to 1/Re, \quad Re \to \infty \]

- We consider a new dynamical process: non-dissipative saturation in axially stratified thin disks.
Thin Disk Geometry

- Axial stretching: $\zeta = \frac{z}{\epsilon}$, $\epsilon = \frac{H}{R}$, $\frac{\partial}{\partial z} = \frac{1}{\epsilon} \frac{\partial}{\partial \zeta}$.

- Supersonic rotation: Rotation Mach Number $= \frac{1}{\epsilon}$.

- Radial force balance: $v_\theta = r\Omega(r)$.

- Axial force balance: $\rho(r, \zeta) = \rho_0(r)e^{-\zeta^2/2H(r)^2}$.

- Free functions: $B_z(r), \rho_0(r), T(r)$.
Thin Disk Geometry

- Axial stretching: \(\zeta = \frac{z}{\epsilon}, \quad \epsilon = \frac{H}{R}, \quad \frac{\partial}{\partial z} = \frac{1}{\epsilon} \frac{\partial}{\partial \zeta}. \)

- Supersonic rotation: \(v_\theta = r \Omega(r). \)

- Radial force balance: \(\rho(r, \zeta) = \rho_0(r) e^{-\zeta^2/2H(r)^2}. \)

- Axial force balance: \(B_z(r), \rho_0(r), T(r). \)
Thin Disk Geometry

- Axial stretching: \(\zeta = \frac{z}{\epsilon}, \quad \epsilon = \frac{H}{R}, \quad \frac{\partial}{\partial z} = \frac{1}{\epsilon} \frac{\partial}{\partial \zeta}. \)

- Supersonic rotation: \(v_\theta = r \Omega(r). \)

- Radial force balance: \(\rho(r, \zeta) = \rho_0(r) e^{-\zeta^2/2H(r)^2}. \)

- Axial force balance: \(B_z(r), \rho_0(r), T(r). \)

- Free functions: \(B_z(r), \rho_0(r), T(r). \)
Thin Disk Geometry

- Axial stretching: \(\zeta = \frac{z}{\epsilon}, \quad \epsilon = \frac{H}{R}, \quad \frac{\partial}{\partial z} = \frac{1}{\epsilon} \frac{\partial}{\partial \zeta}. \)
- Supersonic rotation: \(\text{Rotation Mach Number} = \frac{1}{\epsilon}. \)
- Radial force balance: \(v_\theta = r\Omega(r). \)
- Axial force balance: \(\rho(r, \zeta) = \rho_0(r)e^{-\zeta^2/2H(r)^2}. \)
- Free functions: \(B_z(r), \rho_0(r), T(r). \)
Thin Disk Geometry

- Axial stretching: \(\zeta = \frac{z}{\epsilon} , \quad \epsilon = \frac{H}{R} , \quad \frac{\partial}{\partial z} = \frac{1}{\epsilon} \frac{\partial}{\partial \zeta} \).
- Supersonic rotation: Rotation Mach Number = \(\frac{1}{\epsilon} \).
- Radial force balance: \(v_\theta = r \Omega(r) \).
- Axial force balance: \(\rho(r, \zeta) = \rho_0(r) e^{-\zeta^2/2H(r)^2} \).
- Free functions: \(B_z(r), \rho_0(r), T(r) \).
Thin Disk Geometry

- Axial stretching: \(\zeta = \frac{z}{\epsilon} \), \(\epsilon = \frac{H}{R} \), \(\frac{\partial}{\partial z} = \frac{1}{\epsilon} \frac{\partial}{\partial \zeta} \).
- Supersonic rotation: \(\text{Rotation Mach Number} = \frac{1}{\epsilon} \).
- Radial force balance: \(v_\theta = r\Omega(r) \).
- Axial force balance: \(\rho(r, \zeta) = \rho_0(r)e^{-\zeta^2/2H(r)^2} \).
- Free functions: \(B_z(r), \rho_0(r), T(r) \).
Thin Disk Geometry

Important Parameters

- Plasma beta:
 \[\beta(r) = \beta_0 \frac{\rho_0(r)T(r)}{B_z^2(r)}. \]

- Disk semi-thickness:
 \[H(r) = \frac{\sqrt{T(r)}}{\Omega(r)}. \]
Thin Disk Geometry

Important Parameters

- Plasma beta:

\[\beta(r) = \beta_0 \frac{\rho_0(r)T(r)}{B_z^2(r)}. \]

- Disk semi-thickness:

\[H(r) = \frac{\sqrt{T(r)}}{\Omega(r)}. \]
Important Parameters

- Plasma beta:

\[\beta(r) = \beta_0 \frac{\rho_0(r)T(r)}{B_z^2(r)}. \]

- Disk semi-thickness:

\[H(r) = \frac{\sqrt{T(r)}}{\Omega(r)}. \]
Thin Disk Geometry

Important Parameters

- **Plasma beta**:
 \[\beta(r) = \beta_0 \frac{\rho_0(r)T(r)}{B_z^2(r)} \]

- **Disk semi-thickness**:
 \[H(r) = \sqrt{\frac{T(r)}{\Omega(r)}} \]

Axial Density Stratification

- \[\eta = \frac{\zeta}{H(r)} \]
- \[\rho / \rho_0 = e^{-\eta^2 / 2} \]
- \[\rho / \rho_0 = sech^2(\eta) \]
The Reduced Thin-Disk MHD Equations

\[
\begin{align*}
\frac{\partial}{\partial t} \begin{bmatrix} x_{ac} \\ x_{ms} \end{bmatrix} &= \begin{bmatrix} \mathcal{L}_{ac}(\eta) & 0 \\ 0 & \mathcal{L}_{ms}(\eta) \end{bmatrix} \begin{bmatrix} x_{ac} \\ x_{ms} \end{bmatrix} + \begin{bmatrix} N_{ac}(x_{ac}, x_{ms}) \\ N_{ms}(x_{ac}, x_{ms}) \end{bmatrix} \\
\end{align*}
\]

\[x_{ac} \equiv \begin{bmatrix} v_r \\ v_\theta \\ b_r \\ b_\theta \end{bmatrix}\]

Alfvén-Coriolis in plane perturbations

\[x_{ms} = \begin{bmatrix} v_z \\ \sigma \end{bmatrix}\]

Magneto-Sonic vertical perturbations
The Reduced Thin-Disk MHD Equations

\[
\frac{\partial}{\partial t} \begin{bmatrix} x_{ac} \\ x_{ms} \end{bmatrix} = \begin{bmatrix} \mathcal{L}_{ac}(\eta) & 0 \\ 0 & \mathcal{L}_{ms}(\eta) \end{bmatrix} \begin{bmatrix} x_{ac} \\ x_{ms} \end{bmatrix} + \begin{bmatrix} N_{ac}(x_{ac}, x_{ms}) \\ N_{ms}(x_{ac}, x_{ms}) \end{bmatrix}
\]

\[
x_{ac} \equiv \begin{bmatrix} v_r \\ v_\theta \\ b_r \\ b_\theta \end{bmatrix}
\]

Alfvén-Coriolis in plane perturbations

\[
x_{ms} = \begin{bmatrix} v_z \\ \sigma \end{bmatrix}
\]

Magneto-Sonic vertical perturbations
The Reduced Thin-Disk MHD Equations

\[
\frac{\partial}{\partial t} \begin{bmatrix} x_{ac} \\ x_{ms} \end{bmatrix} = \begin{bmatrix} \mathcal{L}_{ac}(\eta) & 0 \\ 0 & \mathcal{L}_{ms}(\eta) \end{bmatrix} \begin{bmatrix} x_{ac} \\ x_{ms} \end{bmatrix} + \begin{bmatrix} \mathcal{N}_{ac}(x_{ac}, x_{ms}) \\ \mathcal{N}_{ms}(x_{ac}, x_{ms}) \end{bmatrix}
\]

\[x_{ac} \equiv \begin{bmatrix} v_r \\ v_\theta \\ b_r \\ b_\theta \end{bmatrix}\]

Alfven-Coriolis in plane perturbations

\[x_{ms} = \begin{bmatrix} v_z \\ \sigma \end{bmatrix}\]

Magneto-Sonic vertical perturbations
The Reduced Thin-Disk MHD Equations

\[
\frac{\partial}{\partial t} \begin{bmatrix} x_{ac} \\ x_{ms} \end{bmatrix} = \begin{bmatrix} \mathcal{L}_{ac}(\eta) & 0 \\ 0 & \mathcal{L}_{ms}(\eta) \end{bmatrix} \begin{bmatrix} x_{ac} \\ x_{ms} \end{bmatrix} + \begin{bmatrix} N_{ac}(x_{ac}, x_{ms}) \\ N_{ms}(x_{ac}, x_{ms}) \end{bmatrix}
\]

\[
x_{ac} \equiv \begin{bmatrix} v_r \\ v_\theta \\ b_r \\ b_\theta \end{bmatrix}
\]

\[
x_{ms} = \begin{bmatrix} v_z \\ \sigma \end{bmatrix}
\]

Alfven-Coriolis in plane perturbations

Magneto-Sonic vertical perturbations
The Reduced Thin-Disk MHD Equations

\[\frac{\partial}{\partial t} \begin{bmatrix} x_{ac} \\ x_{ms} \end{bmatrix} = \begin{bmatrix} L_{ac}(\eta) & 0 \\ 0 & L_{ms}(\eta) \end{bmatrix} \begin{bmatrix} x_{ac} \\ x_{ms} \end{bmatrix} + \begin{bmatrix} N_{ac}(x_{ac}, x_{ms}) \\ N_{ms}(x_{ac}, x_{ms}) \end{bmatrix} \]

\[x_{ac} \equiv \begin{bmatrix} v_r \\ v_\theta \\ b_r \\ b_\theta \end{bmatrix} \quad \text{Alfven-Coriolis in plane perturbations} \]

\[x_{ms} \equiv \begin{bmatrix} v_z \\ \sigma \end{bmatrix} \quad \text{Magneto-Sonic vertical perturbations} \]
The Alfvén-Coriolis Spectrum

- Analytical solution for the $\rho / \rho_0 = sech^2(\eta)$ vertical profile.

- Assuming that the perturbations evolve in time as $e^{i\omega \Omega t}$:

$$
(L_{ac} + K^+)(L_{ac} + K^-)V_{\theta,r} = 0
$$

$$
L_{ac} = \frac{d}{d\zeta} [(1 - \zeta^2) \frac{d}{d\zeta}], \quad \zeta = tanh(\eta), \quad \text{Legendre operator}
$$

$$
K^\pm = \frac{\pi \beta(r)}{4} (3 + 2\omega^2 \pm \sqrt{9 + 16\omega^2})
$$

- Solutions diverge at most polynomial at $\eta \to \pm\infty$ if:

$$
K^\pm = k(k + 1), \quad k = 1, 2, \ldots \quad \text{and} \quad v_{\theta,r} = P_k[tanh(\eta)]
$$
The Alfvén-Coriolis Spectrum

- Analytical solution for the $\rho / \rho_0 = sech^2(\eta)$ vertical profile.

- Assuming that the perturbations evolve in time as $e^{i\omega \Omega t}$:

$$ (L_{ac} + K^+)(L_{ac} + K^-)V_{\theta,r} = 0 $$

$$ L_{ac} = \frac{d}{d\zeta} [(1 - \zeta^2) \frac{d}{d\zeta}], \quad \zeta = \tanh(\eta), \quad \text{Legendre operator} $$

$$ K^\pm = \frac{\pi \beta(r)}{4} (3 + 2\omega^2 \pm \sqrt{9 + 16\omega^2}) $$

- Solutions diverge at most polynomial at $\eta \to \pm\infty$ if:

$$ K^\pm = k(k+1), \quad k = 1, 2, \ldots \quad \text{and} \quad v_{\theta,r} = P_k[\tanh(\eta)] $$
The Alfvén-Coriolis Spectrum

- Analytical solution for the $\rho / \rho_0 = sech^2(\eta)$ vertical profile.
- Assuming that the perturbations evolve in time as $e^{i\omega \Omega t}$:

$$ (L_{ac} + K^+)(L_{ac} + K^-)V_{\theta,r} = 0 $$

$$ L_{ac} = \frac{d}{d\zeta}[(1 - \zeta^2)\frac{d}{d\zeta}], \quad \zeta = tanh(\eta), \text{ Legendre operator} $$

$$ K^\pm = \frac{\pi \beta(r)}{4}(3 + 2\omega^2 \pm \sqrt{9 + 16\omega^2}) $$

- Solutions diverge at most polynomial at $\eta \rightarrow \pm \infty$ if:

$$ K^\pm = k(k + 1), \quad k = 1, 2, \ldots \quad \text{and} \quad v_{\theta,r} = P_k[tanh(\eta)] $$
The Alfvén-Coriolis Eigenfunctions

$k = 2$ $k = 3$ $k = 4$
The Alfvén-Coriolis Dispersion Relation - MRI

\[K^\pm = k(k + 1) \]

\[\downarrow \]

\[(3\beta_{cr}^k - \omega^2\beta)[3\beta_{cr}^k - (3 + \omega^2)\beta] - 4\omega^2\beta^2 = 0 \]

\[\beta_{cr}^k \equiv \frac{k(k + 1)}{3} \]

\(k \) unstable MRI modes for \(\beta(r) > \beta_{cr}^k \).
The Alfvén-Coriolis Dispersion Relation - MRI

\[K^\pm = k(k + 1) \]

\[\Downarrow \]

\[(3\beta^k_{cr} - \omega^2\beta)[3\beta^k_{cr} - (3 + \omega^2)\beta] - 4\omega^2\beta^2 = 0 \]

\[\beta^k_{cr} \equiv \frac{k(k + 1)}{3} \]

\(k \) unstable MRI modes for \(\beta(r) > \beta^k_{cr} \).
The Alfvén-Coriolis Dispersion Relation - MRI

\[K^\pm = k(k + 1) \]

\[(3\beta_{cr}^k - \omega^2 \beta)[3\beta_{cr}^k - (3 + \omega^2)\beta] - 4\omega^2 \beta^2 = 0 \]

\[\beta_{cr}^k \equiv \frac{k(k + 1)}{3} \]

\[k \text{ unstable MRI modes for } \beta(r) > \beta_{cr}^k. \]
Introduction

The Reduced MHD Equations
The Linear Problem
Weakly Nonlinear Analysis
Summary

The Alfvén-Coriolis System
The Magnetosonic System

MRI Stability Bifurcation Plot

\[\gamma = \text{Im} \omega \]

\[\beta_{cr}^k = \frac{k(k+1)}{3} \]

Zero eigenvalue of multiplicity two at each bifurcation point
The Stable Magnetosonic Spectrum

- Analytical solution for the $\rho/\rho_0 = sech^2(\eta)$ vertical profile.

- Assuming that the perturbations evolve in time as $e^{i\omega \Omega t}$:

$$
(1 - \xi^2) \frac{d^2\sigma}{d\xi^2} + \left[\frac{\omega^2}{1 - \xi^2} + 2 \right] \sigma = 0, \quad \xi = \tanh(\eta)
$$

Boundary conditions: $\sigma(\eta) \to 0$ at $\eta \to \pm \infty$ ($\xi \to \pm 1$)

- Useful substitution:

$$
\sigma(\xi) = \sqrt{1 - \xi^2} f(\xi)
$$
The Stable Magnetosonic Spectrum

- Analytical solution for the $\rho / \rho_0 = \text{sech}^2(\eta)$ vertical profile.

- Assuming that the perturbations evolve in time as $e^{i\omega \Omega t}$:

\[
(1 - \zeta^2) \frac{d^2 \sigma}{d\zeta^2} + \left[\frac{\omega^2}{1 - \zeta^2} + 2 \right] \sigma = 0, \quad \zeta = \tanh(\eta)
\]

Boundary conditions: $\sigma(\eta) \to 0$ at $\eta \to \pm \infty$ ($\zeta \to \pm 1$)

- Useful substitution:

\[
\sigma(\zeta) = \sqrt{1 - \zeta^2} f(\zeta)
\]
The Stable Magnetosonic Spectrum

- Analytical solution for the $\rho/\rho_0 = sech^2(\eta)$ vertical profile.

- Assuming that the perturbations evolve in time as $e^{i\omega \Omega t}$:

\[
(1 - \xi^2) \frac{d^2\sigma}{d\xi^2} + \left[\frac{\omega^2}{1 - \xi^2} + 2 \right] \sigma = 0, \quad \xi = \tanh(\eta)
\]

Boundary conditions: $\sigma(\eta) \to 0$ at $\eta \to \pm\infty$ ($\xi \to \pm 1$)

- Usefull substitution:

\[
\sigma(\xi) = \sqrt{1 - \xi^2} f(\xi)
\]
The Stable Magnetosonic Spectrum

- The associated Legendre equations

\[
(1 - \xi^2) \frac{d^2f}{d\xi^2} - 2\xi \frac{df}{d\xi} + \left[2 - \frac{\mu^2}{1 - \xi^2} \right] = 0
\]

\[
\xi = \tanh(\eta), \quad \mu = \sqrt{1 - \omega^2}
\]

- Solution

\[
\sigma(\eta) = \sqrt{1 - \xi^2} \left[a_+ f_+(\xi) + a_- f_-(\xi) \right]
\]

\[
f_{\pm} = \left[\frac{1 - \xi}{1 + \xi} \right]^{\pm\mu/2} (\mu \pm \xi)
\]
The Stable Magnetosonic Spectrum

- The associated Legendre equations

\[
(1 - \xi^2) \frac{d^2 f}{d\xi^2} - 2\xi \frac{df}{d\xi} + \left[2 - \frac{\mu^2}{1 - \xi^2} \right] = 0
\]

\[
\xi = \tanh(\eta), \quad \mu = \sqrt{1 - \omega^2}
\]

- Solution

\[
\sigma(\eta) = \sqrt{1 - \xi^2} \left[a_+ f_+ (\xi) + a_- f_- (\xi) \right]
\]

\[
f_\pm = \left[\frac{1 - \xi}{1 + \xi} \right]^{\pm \mu/2} (\mu \pm \xi)
\]
Solutions exist for $\omega^2 > 0$ hence the magnetosonic modes are stable and have a continuous spectrum.
Consider β values slightly above the threshold of the first unstable mode ($k = 1$):

$$\beta = \beta_{cr}^1 + \delta$$

δ is a control parameter that is related to the growth rate as:

$$\gamma^2 = \frac{27\delta}{14}$$

Express any perturbation f as:

$$f(r, \eta, t) = \phi_1(\eta)a(t)$$

For small perturbations the amplitude is:

$$a(t) = a_0 e^{\gamma(\delta)t}.$$

Goal of weakly nonlinear analysis: to find differential equation in time for $a(t)$.
Goal

Consider β values slightly above the threshold of the first unstable mode ($k = 1$):

$$\beta = \beta_{cr}^1 + \delta$$

δ is a control parameter that is related to the growth rate as:

$$\gamma^2 = \frac{27\delta}{14}$$

Express any perturbation f as:

$$f(r, \eta, t) = \phi_1(\eta) a(t)$$

For small perturbations the amplitude is:

$$a(t) = a_0 e^{\gamma(\delta)t}.$$

Goal of weakly nonlinear analysis: to find differential equation in time for $a(t)$.

Goal

- Consider β values slightly above the threshold of the first unstable mode ($k = 1$):
 \[\beta = \beta_{cr}^{1} + \delta \]

- δ is a control parameter that is related to the growth rate as:
 \[\gamma^2 = \frac{27\delta}{14} \]

- Express any perturbation f as:
 \[f(r, \eta, t) = \phi_1(\eta)a(t) \]

- For small perturbations the amplitude is:
 \[a(t) = a_0e^{\gamma(\delta)t}. \]

- Goal of weakly nonlinear analysis: to find differential equation in time for $a(t)$.
Goal

- Consider β values slightly above the threshold of the first unstable mode ($k = 1$):
 $$\beta = \beta_{cr}^1 + \delta$$

- δ is a control parameter that is related to the growth rate as:
 $$\gamma^2 = 27\delta / 14$$

- Express any perturbation f as:
 $$f(r, \eta, t) = \phi_1(\eta)a(t)$$

- For small perturbations the amplitude is:
 $$a(t) = a_0 e^{\gamma(\delta)t}.$$

- Goal of weakly nonlinear analysis: to find differential equation in time for $a(t)$.
Goal

- Consider β values slightly above the threshold of the first unstable mode ($k = 1$):
 $$\beta = \beta_{cr}^1 + \delta$$

- δ is a control parameter that is related to the growth rate as:
 $$\gamma^2 = 27\delta/14$$

- Express any perturbation f as:
 $$f(r, \eta, t) = \phi_1(\eta)a(t)$$

- For small perturbations the amplitude is:
 $$a(t) = a_0 e^{\gamma(\delta)t}.$$

- Goal of weakly nonlinear analysis: to find differential equation in time for $a(t)$.
The Amplitude Equation

- Transition to instability ($\delta = 0$) through double zero eigenvalue.

- Crossing the first instability threshold:
 - The single stable fixed point at the center turns into a (unstable) saddle.
 - Two extra stable fixed points emerge.
The Amplitude Equation

- Transition to instability ($\delta = 0$) through double zero eigenvalue.

- Crossing the first instability threshold:
 - The single stable fixed point at the center turns into an (unstable) saddle.
 - Two extra stable fixed points emerge.
The Amplitude Equation

- Transition to instability ($\delta = 0$) through double zero eigenvalue.

- Crossing the first instability threshold:
 - The single stable fixed point at the center turns into a (unstable) saddle.
 - Two extra stable fixed points emerge.
The Amplitude Equation

- Transition to instability \((\delta = 0)\) through double zero eigenvalue.

- Crossing the first instability threshold:
 - The single stable fixed point at the center turns into a (unstable) saddle.
 - Two extra stable fixed points emerge.
The Amplitude Equation

- Transition to instability ($\delta = 0$) through double zero eigenvalue.

- Crossing the first instability threshold:
 - The single stable fixed point at the center turns into a (unstable) saddle.
 - Two extra stable fixed points emerge.

$$\delta < 0$$
The Amplitude Equation

- Transition to instability ($\delta = 0$) through double zero eigenvalue.

- Crossing the first instability threshold:
 - The single stable fixed point at the center turns into a (unstable) saddle.
 - Two extra stable fixed points emerge.

\[\delta < 0 \quad \delta > 0 \]
The Amplitude Equation

- Transition to instability ($\delta = 0$) through double zero eigenvalue.
- Crossing the first instability threshold:
 - The single stable fixed point at the center turns into a (unstable) saddle.
 - Two extra stable fixed points emerge.

\[\delta < 0 \quad \quad \quad \delta > 0 \]

Duffing equation: \[\frac{d^2a}{dt^2} = \gamma^2 a - \alpha a^3 \]
How to Calculate α?

1. Find the new stable steady-state of the reduced MHD equations:

 - $v_r = v_z = b_\theta = 0$, \(\frac{\partial}{\partial t} (v_\theta, b_r, \sigma) = 0 \)
 - $b_r(\eta) = \sqrt{\delta} \mu_1 \phi_1(\eta) + (\sqrt{\delta})^3 \mu_3 \phi_3(\eta) + \ldots$

2. The equation for ϕ_1 is obtained from lowest order and is:

 $$\mathcal{L}(\phi_1) = 0$$

 where \mathcal{L} is the linear Alfvén-Coriolis operator.
How to Calculate \(\alpha \)?

1. Find the new stable steady-state of the reduced MHD equations:

\[
\begin{align*}
 v_r &= v_z = b_\theta = 0, \\
 \frac{\partial}{\partial t} (v_\theta, b_r, \sigma) &= 0 \\
 b_r(\eta) &= \sqrt{\delta} \mu_1 \phi_1(\eta) + (\sqrt{\delta})^3 \mu_3 \phi_3(\eta) + \ldots
\end{align*}
\]

2. The equation for \(\phi_1 \) is obtained from lowest order and is:

\[
\mathcal{L}(\phi_1) = 0
\]

where \(\mathcal{L} \) is the linear Alfvén-Coriolis operator.
How to Calculate α?

3. Solution of lowest order linear equation:

$$\phi_1(\eta) = P_0(\xi) - \xi P_1(\xi)$$

4. Next order equation:

$$\mathcal{L}(\phi_3) = \mathcal{N}(\mu_1 \phi_1)$$

5. Solvability condition for ϕ_3:

$$\langle \phi_1 \mathcal{N}(\mu_1 \phi_1) \rangle = 0$$

Result:

$$\mu_1 = \sqrt{5/2}$$
How to Calculate α?

3. Solution of lowest order linear equation:

$$\phi_1(\eta) = P_0(\xi) - \xi P_1(\xi)$$

4. Next order equation:

$$\mathcal{L}(\phi_3) = \mathcal{N}(\mu_1 \phi_1)$$

5. Solvability condition for ϕ_3:

$$\langle \phi_1 \mathcal{N}(\mu_1 \phi_1) \rangle = 0$$

Result:

$$\mu_1 = \sqrt{5/2}$$
How to Calculate α?

3. Solution of lowest order linear equation:

$$\phi_1(\eta) = P_0(\xi) - \xi P_1(\xi)$$

4. Next order equation:

$$\mathcal{L}(\phi_3) = \mathcal{N}(\mu_1 \phi_1)$$

5. Solvability condition for ϕ_3:

$$< \phi_1 \mathcal{N}(\mu_1 \phi_1) > = 0$$

Result:

$$\mu_1 = \sqrt{5}/2$$
How to Calculate α?

3. **Solution of lowest order linear equation:**

$$\phi_1(\eta) = P_0(\zeta) - \zeta P_1(\zeta)$$

4. **Next order equation:**

$$\mathcal{L}(\phi_3) = \mathcal{N}(\mu_1\phi_1)$$

5. **Solvability condition for ϕ_3:**

$$< \phi_1\mathcal{N}(\mu_1\phi_1) > = 0$$

Result:

$$\mu_1 = \sqrt{5/2}$$
How to Calculate α?

6 Back to Duffing’s equation ($\ddot{a} = \gamma^2 a - \alpha a^3$)

7 The fixed point is given by:

$$a_0 = \sqrt{\frac{\gamma^2}{\alpha}}$$

6 The fixed point is now identified with the amplitude of the new steady-state of the reduced MHD equations:

9 $$\alpha = \sqrt{\frac{5}{2}}$$
How to Calculate α?

6 Back to Duffing’s equation ($\ddot{a} = \gamma^2 a - \alpha a^3$)

7 The fixed point is given by:

$$a_0 = \sqrt{\frac{\gamma^2}{\alpha}}$$

The fixed point is now identified with the amplitude of the new steady-state of the reduced MHD equations:

$$\alpha = \sqrt{\frac{5}{2}}$$
How to Calculate α?

6. Back to Duffing’s equation ($\ddot{a} = \gamma^2 a - \alpha a^3$)

7. The fixed point is given by:

$$a_0 = \sqrt{\frac{\gamma^2}{\alpha}}$$

8. The fixed point is now identified with the amplitude of the new steady-state of the reduced MHD equations:

$$\alpha = \sqrt{\frac{5}{2}}$$
How to Calculate α?

6. Back to Duffing’s equation ($\ddot{a} = \gamma^2 a - \alpha a^3$)

7. The fixed point is given by:

$$a_0 = \sqrt{\frac{\gamma^2}{\alpha}}$$

8. The fixed point is now identified with the amplitude of the new steady-state of the reduced MHD equations:

$$\alpha = \sqrt{\frac{5}{2}}$$
Numerical Calculations

Full line: Duffing Equation

Dashed Line: Nonlinear MHD Equations
The Physical Mechanism

- The growing perturbed magnetic pressure pushes the plasma away and reduces mid-plane density.
- The Alfvén velocity increases.
- The beta value decreases below threshold.
The Physical Mechanism

- The growing perturbed magnetic pressure pushes the plasma away and reduces mid-plane density.
- The Alfvén velocity increases.
- The beta value decreases below threshold.
The Physical Mechanism

- The growing perturbed magnetic pressure pushes the plasma away and reduces mid-plane density.
- The Alfvén velocity increases.
- The beta value decreases below threshold.
The growing perturbed magnetic pressure pushes the plasma away and reduces mid-plane density.
The Alfvén velocity increases.
The beta value decreases below threshold.
The growing perturbed magnetic pressure pushes the plasma away and reduces mid-plane density.

- The Alfvén velocity increases.
- The beta value decreases below threshold.
One conservation law for the amplitude:

\[
\left(\frac{da}{dt} \right)^2 + \frac{1}{2} \alpha a^4 - \gamma^2 a^2 = h
\]

\(a(t)\) is expressed in terms of the Jacobi Elliptic Functions.
\[
\Rightarrow \quad a(t) \text{ is bounded.}
\]

Sensitivity of the period of the nonlinear oscillations to Initial Conditions:

\[
P \to \frac{1}{2\gamma} \ln \left(\frac{32\gamma^2}{\alpha h} \right) \quad \text{as} \quad h \to 0
\]
Properties of the Weakly Nonlinear Solution

- One conservation law for the amplitude:
 \[
 \left(\frac{da}{dt} \right)^2 + \frac{1}{2} \alpha a^4 - \gamma^2 a^2 = h
 \]

 \(a(t)\) is expressed in terms of the Jacobi Elliptic Functions.
 \(\Rightarrow\) \(a(t)\) is bounded.

- Sensitivity of the period of the nonlinear oscillations to Initial Conditions:
 \[
 P \rightarrow \frac{1}{2\gamma} \ln \left(\frac{32\gamma^2}{\alpha h} \right) \quad \text{as} \quad h \rightarrow 0
 \]
Summary

- A new non-dissipative saturation mechanism of the MRI has been demonstrated.

- The MRI excites Magneto-Sonic waves that modify the plasma density.

- The MRI saturates in form of bursty oscillations that drive the system in and out of the stable regime.

- The period of the bursty nonlinear oscillations is sensitive to the initial conditions.
Summary

- A new non-dissipative saturation mechanism of the MRI has been demonstrated.

- The MRI excites Magneto-Sonic waves that modify the plasma density.

- The MRI saturates in form of bursty oscillations that drive the system in and out of the stable regime.

- The period of the bursty nonlinear oscillations is sensitive to the initial conditions.
A new non-dissipative saturation mechanism of the MRI has been demonstrated.

The MRI excites Magneto-Sonic waves that modify the plasma density.

The MRI saturates in form of bursty oscillations that drive the system in and out of the stable regime.

The period of the bursty nonlinear oscillations is sensitive to the initial conditions.
Summary

- A new non-dissipative saturation mechanism of the MRI has been demonstrated.
- The MRI excites Magneto-Sonic waves that modify the plasma density.
- The MRI saturates in form of bursty oscillations that drive the system in and out of the stable regime.
- The period of the bursty nonlinear oscillations is sensitive to the initial conditions.
For Further Reading I

- E. Liverts and M. Mond
 MNRAS, 2(1):50–100,

- Y. Shtemler, M. Mond, and E. Liverts
 MNRAS, 2(1):50–100,

- E. Knobloch and K. Julien
 MNRAS, 2(1):50–100,

- O.M. Umurhan, K. Menou, and O. Regev
 MNRAS, 2(1):50–100,

- E. Liverts, Y. Shtemler, M. Mond, O.M. Umurhan, and D. Bisikalo
 Phys. Rev. Lett., 2(1):50–100,
For Further Reading II

O.M. Umurhan and O.Regev.

Fluid Dynamics.

Coming soon to a library near you, 2013.