Stellar spot modelling and differential rotation

Hans-Erich Fröhlich, Rainer Arlt
Leibniz-Institut für Astrophysik Potsdam (AIP)
Corot star HD 50773, Ap2V, $P_{\text{rot}} = 2.1$ d

Solution with bright spots

Lüftinger et al. (2010): photometry versus spectro-polarimetry
The model

- Circular spots
  (this assumption allows analytic formulae for change of brightness of the star)
- Can occupy any latitude
- Differential rotation described by
  - Either individual spot periods or
    - \( \Omega(b) = \Omega_0 + \delta\Omega \sin^2 b \)
- Spots should not move through each other
- Quadratic limb-darkening with constant coefficients
Corot-7a

- Light curve with apparently irregular variations
- G9V star with $P_{\text{rot}} = 20.2$ days
- 131 days, about 6.5 rotation
- Can we measure the differential rotation?
Corot-7a

- Sharp definition of the inclination of the star
- Differential rotation: -0.074 rad/d
- Prediction by M. Küker: -0.07
Corot-7a

- 6 spots
- 4*6 slopes
- 2*6 coords
- 6 sizes
- Omega
- Diff. Rot
- Inclination
- ~50 parameters
Too many parameters?

➢ Full-surface maps:

In the present model, the stellar surface is subdivided into elements, i.e., into 200 squares of side 18°, with each element containing unperturbed photosphere, dark spots, and facular areas. The fraction of the $k$th element covered by dark spots is indicated by its filling factor $f_k$, the fractional area of the faculae is $Q f_k$, and the fractional area of the unperturbed photosphere is $1 - (Q + 1) f_k$. The contribution to the stellar flux coming from

Bonomo & Lanza (2012)

➢ Spot modelling is still a way of reducing the number of parameters considerably
More Bayes recipes

- Use \( \sin b \) instead of \( b \)
- Use \( \cos i \) instead of \( i \)
- Modelling should be independent of choice of uniquely related parameters
  - Period versus frequency
  - Spot area versus spot radius
- Use log(area) or log(Period), then the results are identical
Corot-2a

- G7V, <0.5Gyr, \( P_{\text{rot}} = 4.5 \) days
- Diff. Rot. -0.11 rad/day
- Theory -0.09 rad/day

Küker et al. (2011) for Corot-2a
KIC 8429280

- Young active K2V star, < 50 Myr
- Light curve 138 d
- Very prominent beating
KIC 8429280

- Diff. Rot.
  -0.266 rad/d!
KIC 7985370 and KIC 7765135

- Estimated age: 100-200 Myr
KIC 7985370

- $P_{\text{rot}} = 2.9$ d
- G1.5V
KIC 7985370

- Solid line: original data
- Dashed line: detrended Kepler data
- Note the small difference between the two

➢ Bayesian modelling is fairly robust
Summary

- Spot modelling with circular spots of constant brightness (typically darkness)
- Promising results from MOST and CoRot data
- Kepler stars higher differential rotation than theoretical values <=> in contradiction with Reinhold picture
- Kepler data are very accurate! Bayes Information Criterion (BIC) indicates even more parameters are allowed to model the light curves