Differential rotation in very-low-mass stars: a clue to dynamo bistability?

Julien Morin
Institut für Astrophysik Göttingen

J. F. Donati, P. Petit
IRAP – CNRS / Université de Toulouse

X. Delfosse, T. Forveille
IPAG – CNRS / Université de Grenoble

M. Jardine
University of St Andrews

E. Dormy, M. Schrinner
MAG – ENS Paris / IPGP

A. Reiners, D. Shulyak, S. Wende
IfA Göttingen

U. Christensen, L. Duarte, T. Gastine, J. Wicht
MPS

Differential Rotation and Magnetism across the HR Diagram
Nordita, Stockholm
8th April 2013
1. Studying magnetic fields of M dwarfs
2. Magnetic fields of very-low-mass stars
3. Dynamo bistability
Outline

1. Studying magnetic fields of M dwarfs
 - Fully-convective vs solar dynamo
 - Dynamos of stars and planets
 - Magnetic field measurements in unpolarized light
 - Magnetic field measurements with spectropolarimetry

2. Magnetic fields of very-low-mass stars

3. Dynamo bistability
Fully-convective vs solar dynamo

Adapted from Reiners (2007)

M dwarfs
Fully-convective vs solar dynamo

Adapted from Reiners (2007)
Fully-convective vs solar dynamo

Adapted from Reiners (2007)

Schou et al. (1998)

M dwarfs
DYNAMOS OF STARS AND PLANETS

Goudard & Dormy (2008)
Dynamos of stars and planets

Christensen, Holzwarth & Reiners (2009)
Magnetic fields measurements in unpolarized light

- Zeeman effect
- Measure “magnetic flux”
 - Atomic lines
 - *Saar (1988)*
 - *Johns-Krull & Valenti (1996)*
 - Molecular lines
 - *Reiners & Basri (2007+)*
 - *Shulyak et al. (2010)*

→ Single Ro-Bf relation for partly- and fully-convective stars (SpT < M6)
Magnetic fields measurements in unpolarized light

- Zeeman effect
- Measure “magnetic flux”
 - Atomic lines
 - Saar (1988)
 - Johns-Krull & Valenti (1996)
 - Molecular lines
 - Reiners & Basri (2007+)
 - Shulyak et al. (2010)
- Single Ro-Bf relation for partly- and fully-convective stars (SpT<M6)

Reiners, Basri & Browning (2009)
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
 - Zeeman-Doppler Imaging
 - Semel (1989)
- Efficient instruments
- Multi-line techniques
 - M dwarfs within reach!

→ Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation

→ $\langle B_V \rangle / \langle B_I \rangle$ increases
 - Reiners & Basri (2009)
 - Morin et al. (2010)
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
 - Zeeman-Doppler Imaging
 - Semel (1989)
 - Efficient instruments
 - Multi-line techniques
 - M dwarfs within reach!

 ➔ Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation

 ➔ $\langle B_V \rangle / \langle B_I \rangle$ increases
 - Reiners & Basri (2009)
 - Morin et al. (2010)
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
 - Zeeman-Doppler Imaging
 - *Semel (1989)*
 - Efficient instruments
 - Multi-line techniques
 - M dwarfs within reach!

→ Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation

→ $\langle B_V \rangle / \langle B_I \rangle$ increases
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
 - Zeeman-Doppler Imaging
 - Semel (1989)
- Efficient instruments
- Multi-line techniques
 - M dwarfs within reach!

- Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation
 - $\langle B_V \rangle / \langle B_I \rangle$ increases
 - Reiners & Basri (2009)
 - Morin et al. (2010)
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
- Zeeman-Doppler Imaging
 - *Semel (1989)*
- Efficient instruments
- Multi-line techniques
- M dwarfs within reach!

- Sharp transition large-scale B
- Strong axial dipolar component
- Weak differential rotation
- $\langle B_V \rangle / \langle B_I \rangle$ increases

Reiners & Basri (2009)
Morin et al. (2010)
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
- Zeeman-Doppler Imaging

 \textit{Semel (1989)}

- Efficient instruments
- Multi-line techniques
- M dwarfs within reach!

→ Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation

→ \(\langle B_V \rangle / \langle B_I \rangle \) increases

- \(\nu \sin i = 1 \ km \ s^{-1} \)

\[\begin{align*}
\text{Julien Morin} & \quad \text{DR and dynamo bistability in very-low-mass stars} \\
08/04/2013 & \quad 7 / 17
\end{align*} \]
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
- Zeeman-Doppler Imaging (Semel, 1989)
- Efficient instruments
- Multi-line techniques
- M dwarfs within reach!
- Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation
- $\langle B_V \rangle / \langle B_I \rangle$ increases
 - Reiners & Basri (2009)
 - Morin et al. (2010)

$v \sin i = 10 \text{ km s}^{-1}$
measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only

Zeeman-Doppler Imaging
 Semel (1989)

- Efficient instruments
- Multi-line techniques
 - M dwarfs within reach!
 - Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation
 - $\langle B_V \rangle / \langle B_I \rangle$ increases

$\nu \sin i = 20 \, \text{km s}^{-1}$

Reiners & Basri (2009)
Morin et al. (2010)
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
 - Zeeman-Doppler Imaging
 - *Semel (1989)*
 - Efficient instruments
 - Multi-line techniques
 - M dwarfs within reach!

→ Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation
 \[\langle B_V \rangle / \langle B_I \rangle \text{ increases} \]

- Reiners & Basri (2009)
- Morin et al. (2010)
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
 - Zeeman-Doppler Imaging
 - *Semel (1989)*
 - Efficient instruments
 - Multi-line techniques
- M dwarfs within reach!
- Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation
- $\langle B_V \rangle / \langle B_I \rangle$ increases
 - *Reiners & Basri (2009)*
 - *Morin et al. (2010)*
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
 - Zeeman-Doppler Imaging
 - *Semel (1989)*

- Efficient instruments
- Multi-line techniques
 - M dwarfs within reach!
 - Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation
 - $\langle B_V \rangle / \langle B_I \rangle$ increases
 - *Reiners & Basri (2009)*
 - *Morin et al. (2010)*
B measurements with spectropolarimetry

- Zeeman effect
- Field orientation + polarity
- Large-scale field only
- Zeeman-Doppler Imaging
 Semel (1989)
- Efficient instruments
- Multi-line techniques
- M dwarfs within reach!
- Sharp transition large-scale B
 - strong axial dipolar component
 - weak differential rotation
- \(\langle B_V \rangle / \langle B_I \rangle \) increases

Morin, Donati et al. (2008+)
Phan-Bao et al. (2009)

Reiners & Basri (2009)
Morin et al. (2010)
Outline

1. Studying magnetic fields of M dwarfs

2. Magnetic fields of very-low-mass stars
 - B of VLMS from spectropolarimetry
 - Scenarios for the magnetism of VLMS

3. Dynamo bistability
11 fully-convective stars
- M5-M8 – $M_\star < 0.22\, M_\odot$
- $P_{\text{rot}} < 4.3\, \text{d} – \text{Ro} \sim 10^{-2}$
- Similar stellar parameters
- Two distinct magnetisms
 - Strong aligned dipole, long-lived
 - Weaker multipolar field, evolving

Morin et al. (2010)
B of VLMS from spectropolarimetry

- 11 fully-convective stars
 - M5-M8 – $M_\star < 0.22 \, M_\odot$
 - $P_{\text{rot}} < 4.3 \, \text{d} – R_\odot \sim 10^{-2}$
- Similar stellar parameters
- Two distinct magnetisms
 - Strong aligned dipole, long-lived
 - Weaker multipolar field, evolving

Morin et al. (2010)
11 fully-convective stars

- M5-M8 – $M_\star < 0.22 \, M_\odot$
- $P_{\text{rot}} < 4.3 \, \text{d} – Ro \sim 10^{-2}$
- Similar stellar parameters
- Two distinct magnetisms
 - Strong aligned dipole, long-lived
 - Weaker multipolar field, evolving

Only large-scale field affected?

Morin et al. (2010)
Scenarios for the magnetism of VLMS

- Cyclic change SD ↔ WM?
 - up to 3 yr time-series
 - ∃ variability
 - No such change observed

- An effect of age?
 - WM younger
 - SD older
 - Phenomenology?

- Another "hidden" parameter?

- Dynamo bistability
 - Two distinct solutions for one set of parameters
 - Depend on initial conditions
Outline

1. Studying magnetic fields of M dwarfs
2. Magnetic fields of very-low-mass stars
3. Dynamo bistability
 - Weak and strong field dynamos
 - Low $R_o\ell$ transition in DNS
Weak and strong field dynamos

Large-scale dynamo bistability
- Similar Bf on both branches

Field strength
- Strong field branch
 - Coriolis–Lorentz force balance
 - \[\Lambda = \frac{B^2}{\rho \mu \eta \Omega} = \mathcal{O}(1) \]
 - \(B_{sf} \sim 2 - 50 \) kG

Gap between branches
- Lorentz-inertia
 - Lorentz-Coriolis balance
 - \(\frac{B_{sf}}{B_{wf}} = Ro^{-1/2} \sim 10 \)
- Not yet observed in DNS
- V. Morin & Dormy (2009)

Adapted from Roberts (1978)

Morin, Dormy, Schrinner & Donati (2011)
Low Ro_ℓ transition in DNS

- **Christensen & Aubert (2006)**
 - Boussinesq simulations
 - Inertia-Coriolis balance:
 \[Ro_\ell = \frac{Ro_{\hat{\ell} u}}{\pi} \]
 - Low $Ro \Rightarrow$ dipolar

- **Schrinner et al. (2012)**
 - Stress-free boundary conditions

- **Simone & Christensen (2005)**
 - Bistability at low Ro dip vs multipolar depending on IC

- **Gastine et al. (2012)**
 - Similar results in anelastic
 - For moderate stratification

- **Duarte et al. (2013)**
 - Extend to higher stratification
Low Ro_ℓ transition in DNS

- **Christensen & Aubert (2006)**
 - Boussinesq simulations
 - Inertia-Coriolis balance:
 \[
 \text{Ro}_\ell = \text{Ro} \frac{\ell_{\text{u}}}{\pi}
 \]
 - Low Ro \rightarrow dipolar

- **Schrinner et al. (2012)**
 - Stress-free boundary conditions
 - **Simitev & Busse (2009)**
 - Bistability at low Ro
 - dip vs multipolar depending on IC

- **Gastine et al. (2012)**
 - Similar results in anelastic
 - For moderate stratification

- **Duarte et al. (2013)**
 - Extend to higher stratification
Low Ro_ℓ transition in DNS

- **Christensen & Aubert (2006)**
 - Boussinesq simulations
 - Inertia-Coriolis balance:
 \[Ro_\ell = Ro \frac{\ell u}{\pi} \]
 - Low $Ro \rightarrow$ dipolar

- **Schrinner et al. (2012)**
 - Stress-free boundary conditions
 - **Simitev & Busse (2009)**
 - Bistability at low Ro
 - dip vs multipolar depending on IC

- **Gastine et al. (2012)**
 - Similar results in anelastic
 - For moderate stratification

- **Duarte et al. (2013)**
 - Extend to higher stratification
Low Ro_ℓ transition in DNS

- **Christensen & Aubert (2006)**
 - Boussinesq simulations
 - Inertia-Coriolis balance: $Ro_\ell = Ro \ell \frac{\ell_u}{\pi}$
 - Low $Ro \rightarrow$ dipolar

- **Schrinner et al. (2012)**
 - Stress-free boundary conditions
 - Simitev & Busse (2009)
 - Bistability at low Ro
 - dip vs multipolar depending on IC

- **Gastine et al. (2012)**
 - Similar results in anelastic
 - For moderate stratification

- **Duarte et al. (2013)**
 - Extend to higher stratification
Anelastic simulations vs observations (1/2)

- Compare simulations w/ spectropolarimetric measurements
 - large-scale component of B
 - “scale separation” assumption
 - similar transition to bistable regime

- Caveats and questions
 - $R\ell$ <-> empirical Ro ?
 - Can we find multipolar fields
 - $M_* > 0.15 \, M_\odot$?
 - $Ro > 0.02$?
 - Outlier

Gastine, Morin et al. (2013)
Anelastic simulations vs observations (1/2)

- Compare simulations w/ spectropolarimetric measurements
 - large-scale component of \mathbf{B}
 - “scale separation” assumption
 - similar transition to bistable regime

- Caveats and questions
 - $Ro_\ell \leftrightarrow$ empirical Ro ?
 - Can we find multipolar fields
 - $M_\star > 0.15 M_\odot$?
 - $Ro > 0.02$?
 - Outlier

- Larger survey of active M dwarfs
Anelastic simulations vs observations (2/2)

DR plays a key role in dynamo on the multipolar branch

Schrinner, Petitdemange & Dormy (2012)

Clue to assess parallel observations/numerical models?

Julien Morin DR and dynamo bistability in very-low-mass stars 08/04/2013 15 / 17
Anelastic simulations vs observations (2/2)

V374 Peg

\[\frac{\Delta \Omega}{\Omega} \approx 0.04\% \]

(a)

(b)

GJ 1245 B

Dipolar branch

Multipolar branch

DR plays a key role in dynamo on the multipolar branch

Schrinner, Petitdemange & Dormy (2012)

Clue to assess parallel observations/numerical models?
DR plays a key role in dynamo on the multipolar branch

Schrinner, Petitdemange & Dormy (2012)

Clue to assess parallel observations/numerical models?
Observations of DR in VLMS

- CO band at 2.3 μm
 - Landé factors ~ 0
 - Several 10s deep lines
 - Low spot-to-photosphere contrast

- CRIRES observations
 - $R=10^5$
 - \sim Full CO band
 - Deconvolve rotation profile
 - Use ratio zeros FT

PHOENIX models, S. Wende
Observations of DR in VLMS

- CO band at 2.3 µm
 - Landé factors ~ 0
 - Several 10s deep lines
 - Low spot-to-photosphere contrast

- CRIRES observations
 - $R=10^5$
 - \sim Full CO band
 - Deconvolve rotation profile
 - Use ratio zeros FT
 - ~ 10 dMe w/ moderate $v \sin i$
Summary and conclusions

- M dwarfs: prime interest for dynamos
 - non-solar dynamo
 - fast-rotation

- Observations
 - Unpolarized spectroscopy
 - Spectropolarimetry
 - Bistable domain VLMS/fast rotation

- Theory/Simulations
 - \(\mathcal{R}_\ell \) drives \(\mathbf{B} \) geometry
 - Bistable domain
 - Interplay DR ↔ \(\mathcal{B} \)

→ More to come!

CFHT 2013 observations
Summary and conclusions

- M dwarfs: prime interest for dynamos
 - non-solar dynamo
 - fast-rotation

- Observations
 - Unpolarized spectroscopy
 - Spectropolarimetry
 - Bistable domain VLMS/fast rotation

- Theory/Simulations
 - $R_\ell \rightarrow$ drives B geometry
 - Bistable domain
 - Interplay DR $\leftrightarrow B$

→ More to come!

CFHT 2013 observations