“Explosive Percolation”

S. N. Dorogovtsev

University of Aveiro
and
Ioffe Institute, St. Petersburg

R. A. da Costa, SND, A. V. Goltsev, and J. F. F. Mendes,
“Explosive percolation” transition is actually continuous,
arXiv:1009.2534

simulation: 512,000 nodes

ordinary percolation: “explosive percolation”:

\[\min(s_1 s_2, s_3 s_4) \]
How can it be?: discontinuity coexisting with critical power-law distributions and scaling above and below this transition - ???
Representative model of “explosive percolation”

ordinary percolation:

“explosive percolation” \((m = 2)\):

A

B

(arXiv:1009.2534)
Relation between models
Simulations 2×10^9 nodes:

$$S \propto \delta^\beta$$

$$\beta \approx 0.0476 \approx 1/18, \ \delta = t - t_c$$
Estimate

Suppose $\beta = 1/18$ and $N = 10^{18}$. The smallest time interval is $1/N$. Then a single step from the percolation threshold gives

$$S \sim (10^{-18})^{1/18} \sim 0.1$$

So simulations are virtually useless. We must study the infinite system.
Distributions

\(n(s) \) and \(P(s) \) are for clusters

\[
P(s) = sn(s)/\langle s \rangle,
\]

\[
\sum_s P(s) = 1 - S
\]

\(Q(s) \) is for merging clusters,

\[
\sum_s Q(s) = 1 - S^2
\]

\[
Q_{\text{cum}}(s) + S^2 = [P_{\text{cum}}(s) + S]^2
\]

\[
Q(s) = [P_{\text{cum}}(s) + P_{\text{cum}}(s + 1) + 2S]P(s)
\]

\[
= [2 - 2P(1) - 2P(2) - \ldots - 2P(s-1) - P(s)]P(s)
\]
Equations

\[
\frac{\partial P(s, t)}{\partial t} = s \sum_{u+v=s} Q(u, t)Q(v, t) - 2sQ(s, t)
\]

exactly describe the evolution of the distributions in the full range of \(t \) for the infinite system.

We solved numerically \(10^6 \) equations, which gives precise description of the distributions for \(s \leq 10^6 \).
Fitting by the law $S_0 + C \delta^\beta$ gives $S_0 < 0.005$.

$$s \leq 10^6$$
\[s \leq 10^6 \]
Scaling functions

\[P(s, t) = s^{1-\tau} f(s^{\delta^{1/\sigma}}) \]
\[Q(s, t) = s^{3-2\tau} g(s^{\delta^{1/\sigma}}) \]
Ordinary percolation: scaling functions

\[P(s) = s^{1-\tau} f(s^{\delta^{1/\sigma}}) \]
Table: Percolation thresholds, critical exponents, and fractal and upper critical dimensions ($m = 2$)

<table>
<thead>
<tr>
<th></th>
<th>t_c</th>
<th>β</th>
<th>τ</th>
<th>σ</th>
<th>γ_P</th>
<th>γ_Q</th>
<th>d_f</th>
<th>d_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary</td>
<td>$1/2$</td>
<td>1</td>
<td>$5/2$</td>
<td>$1/2$</td>
<td>1</td>
<td>$-$</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Explosive</td>
<td>$0.923207508(2)$</td>
<td>$0.0555(1)$</td>
<td>$2.04762(2)$</td>
<td>$0.857(3)$</td>
<td>$1.111(1)$</td>
<td>$1.0556(5)$</td>
<td>$2.333(1)$</td>
<td>$2.445(1)$</td>
</tr>
</tbody>
</table>

$$
\tau = 1 + \beta / (1 + 3 \beta), \quad \sigma = 1 / (1 + 3 \beta), \quad \gamma_P = 1 + 2 \beta, \\
\gamma_Q = 1 + \beta, \quad d_f = 2(1 + 3 \beta), \quad d_u = 2(1 + 4 \beta) \\
t_c(\infty) - t_c(N) \sim N^{-2/d_u}
$$

(arXiv:1009.2534)
If the distributions are power-law at the critical point, then $S \sim \delta^\beta$.
Indeed, above t_c, we have

$$Q(s) \approx 2SP(s)$$

at large s.
So the equation for the asymptotics contains only $P(s)$ and $S(t)$. This equation is very similar to that for ordinary percolation.
Using $P(s, t_c) = f(0)s^{1-\tau}$ as an initial condition, we solve this equation and find critical exponents and scaling functions above t_c.

(arXiv:1009.2534)
Relation between τ and t_c

\[
P(s = 1, t_c) \sum_s s^{1-\tau} \approx 1
\]

\[
P(s = 1, t) = \frac{2}{1 + e^{4t}}
\]

\[
\frac{2}{1 + e^{4t_c}} \zeta(\tau - 1) \approx 1
\]

Substituting t_c gives $\tau - 2 \approx 0.05$.
With increasing m, t_c approaches 1 and β rapidly decreases with m, but the transition remains continuous.
Conclusion

There is no explosion in “explosive percolation”.

Lectures on Complex Networks