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Outline

Integrability of the spectral problem of planar N = 4 SYM
Beyond the planar limit for N = 4 SYM
Non-planar ABJ(M), integrability and parity
N = 4 SYM with gauge group SO(N)

Summary and outlook
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The spectral problem of planar N = 4 SYM

N = 4 SYM, gauge group SU(N)←→ IIB strings on AdS5 × S5

λ = g2
YMN,︸ ︷︷ ︸

loop expansion

1
N︸︷︷︸

topological exp.

R2

α′ =
√

λ,︸ ︷︷ ︸
spectrum

gs =
λ

N︸ ︷︷ ︸
interactions

Local gauge invariant operators←→ string states
Conformal dimensions, ∆←→ energies of string states

The spectral problem of N = 4 SYM:
Determine ∆ = ∆(λ, N)⇔ Diagonalize dilatation generator D

The planar version: N →∞, integrable

Theme of the talk: What happens when we go beyond the
planar limit (i.e. N finite)
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Integrability of the planar spectral problem

Ex: SU(2) sector, one loop order, O = Tr(ZZZXXXXZZXXXZ )
[Minahan &Zarembo ’02 ]

1 2 3 L

s1 sLs2 s3

SL+m = Sm

D̂ =
λ

2

L∑
n=1

(1− σ̄n · σ̄n+1) = λ

L∑
n=1

(
1− Pn,n+1

)
≡ λ

L∑
n=1

Ĥn,n+1

Conserved charges: ∃ Q̂i , i = 1, . . . , L :
[
Q̂i , Q̂j

]
= 0

Q̂1 =
∑

n

e i P̂n , Q̂2 = D̂

3Q Σ
n n n+1 n+2

m sites

Qm :

H n,n+1[ n+1,n+2 =],= Ĥ^^

^
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Bethe equations

Length L with M excitations: M Bethe equations for {uk}Mk=1(
uk + i

2

uk − i
2

)L

=
M∏

j=1,j 6=k

uk − uj + i
uk − uj − i

, k = 1, . . . , M

Eigenvalues for D̂

E({uk}) =
M∑

k=1

1
u2

k + 1
4

Cyclicity constraint

M∑
k=1

pk = 0, where uk =
1
2

cot
(pk

2

)
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Beyond one-loop order

Higher orders in λ:

Spin chain with long range interactions

Order λn: interactions between n + 1 nearest neighbours

Still integrable:

∃ conserved charges Qi , i = 1, . . . , L :

at n-loop order: Qi = Q0
i + λQ1

i + . . . + λnQn
i ,[

Qi , Qj
]

= O(λn+1), Qn
i of range (i + n)

Conjectured to be true at any loop order (proved to 2-4 loops)
[Beisert, C.K. Staudacher ’03, Beisert, & Staudacher ’05, Beisert, Eden Staudahcer ’06, Beisert, Hernandez, Lopez ’06, ...]

Discovery: Observation of otherwise unexplained degeneracies
in the spectrum [Beisert, C.K. & Staudacher ’03]
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Parity I

P̂Tr(Z 3X 2ZX ) = Tr(XZX 2Z 3) = Tr(Z 3XZX 2), P̂2 = 1

[P̂, Ĥ] = 0, i.e. eigenstates of Ĥ can be chosen of definite
parity, P = ±1

Observation: Pairs of operators with opposite parity but the
same energy. Survive loop corrections.

Explanation: The existence of Q̂3, i.e. integrability

3Q = n,n+1,Hn+1,n+2 ] =  [H

     

n

{Q̂3, P} = 0, [Q̂3, Ĥ] = 0 =⇒
The operators in a degenerate pair are connected via Q̂3.
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Parity II

Bethe eqns, dispersion relation, cyclicity constraint invariant
under {uk} → {−uk}.

Unpaired solutions: |{uk}〉 such that {uk} = {−uk}

Paired solutions: |{uk}〉, |{−uk}〉 where {uk} 6= {−uk}.

Parity in general:

P̂|{uk}〉 = (−1)M(L+1)|{−uk}〉

Unpaired solutions: P = (−1)M(L+1)

Paired solutions can be combined to parity eigenstates:

P̂(|{uk}〉 ± |{−uk}〉) = (−1)M(L+1)(±1)(|{uk}〉 ± |{−uk}〉)

[A. Ipsen ]
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Beyond the planar limit for SU(N) N = 4 SYM

O = Tr(X . . . XZ . . .)Tr(X . . . XZ . . .) ⊂ SU(2) sector.
[Constable et al ’02], [Beisert, C.K., Plefka, Semenoff & Staudacher ’02]

D̂ = −g2
YM : Tr[Z , X ][Ž , X̌ ] :, (Ž )α β =

δ

δZβ α

= λ(D0 +
1
N

D+︸ ︷︷ ︸
adds a trace

+
1
N

D−︸ ︷︷ ︸
removes a trace

)

Origin: Quartic interaction between scalars

Example:

Tr(ZXŽX̌) · Tr(XZXXZ) Tr(XZ) = Tr(ZXŽZXXZ) Tr(XZ)
1 2 3

= NTr(ZXXXZ) Tr(XZ) + Tr(ZX) Tr(ZXX) Tr(XZ) + Tr(ZXZZZXXZ)
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The non-planar part of D̂

D+ + D− =
∑

k

∑
l 6=k+1

(
1− Pk ,l

)
Σk+1,l ≡

∑
k

H(1)
k
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Search for integrability beyond the planar limit

Search for conserved charges (extremely non-local,
involve trace splitting and joinning)

Search for S-matrix and/or Bethe ansatz (Hilbert space
enormously complicated)
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1
N -corrections to short operators

Easy to evaluate
D+O, D−O involves a finite (small) number of operations
Only diagonalization of finite-dim. matrix

Strategy:
Consider closed set of operators. Ex: Length 8 with 3
excitations
Find the planar eigenvalues and eigenstates (can be
checked by Bethe eqns.).
Write down D̂ in the basis of planar eigenstates and do
perturbation theory in 1

N .
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1
N corrections to short operators—Lessons learned

Lessons learned

Including 1
N corrections, degeneracies between parity pairs

are lifted, but still [H, P] = 0
=⇒ absence of Q3, at least in its previous form»

Beisert, C.K.
Staudacher ’03

–

∆ does not always have a well-defined expansion in λ and
1
N but D has. (Higher loop effect.)
[Ryzhov ’01], [Arutyunov et al. ’02]

»
Bianchi, Kovacs

Rossi,Stanev ’02

– »
Beisert, C.K.

Staudacher ’03

–

Degeneracies between single and double trace states (of
equal parity) lead to 1

N as opposed to 1
N2 corrections.
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Lessons learned for ABJ(M) theory

Lessons learned for ABJM and ABJ theory

ABJM: Including 1
N -corrections, degeneracies between

parity pairs are lifted, but still [H, P] = 0
=⇒ absence of Q3, at least in its previous form

»
C.K., Orselli
Zoubos ’08

–

ABJ: Including non-planar corrections, [H, P] 6= 0 (and
degeneracies are lifted).

»
Caputa, C.K.,
Zoubos ’09

–
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Search for integrability beyond the planar limit

Search for conserved charges (extremely non-local,
involve trace splitting and joinning)

Search for S-matrix and/or Bethe ansatz (Hilbert space
enormously complicated)
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N = 4 SYM with gauge group SO(N)

N = 4 SYM, gauge group SO(N)←→ IIB strings on AdS5×RP5

[Witten ’98]

RP5 = S5/Z2, (
∑6

i=1 X 2
i = 1, X i ≡ −X i), orientifold

Feynman diags w/ cross-caps←→ non-orientable world sheets

Leading 1
N -effects do not involve chain splitting and joining
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Weighting of Feynman and string diagrams

N0 1
N

1
N2
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The planar spectral problem for SO(N)

Restrict to SU(2) sector: O = Tr(X . . . XZ . . .)

Parity is gauged: X T = −X =⇒

P̂Tr(Xi1 . . . XiL) = Tr(XiLXiL−1 . . . Xi1) = (−1)LTr(Xi1 . . . XiL)

Planar dilatation operator at one-loop order

D̂SO(N)
0 =

λ

2

L∑
i=1

(1− Pi,i+1) =
1
2

D̂SU(N)
0

Planar spectral problem ⊂ planar spectral problem for SU(N)

Surviving states:
One state from each parity pair:
|{uk}〉+ (−1)M(L+1)+L|{−uk}〉
Unpaired states of L and M even
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1
N effects for gauge group SO(N)

Restrict to SU(2) sector: O = Tr(X . . . XZ . . .)Tr(X . . . XZ . . .)

D̂ = −
g2

YM
8π2 Tr[Z , X ][Ž , X̌ ], (Ž )α βZγε =

1
2
(δαεδβγ − δαγδβε)

=
λ

2
(D0 +

1
N

D+ +
1
N

D̃− +
1
N

Dflip︸ ︷︷ ︸)
Acts inside a single trace

Dflip · Tr(XWZY ) = Tr([Z,X]W T Y ) + Tr([Z,X]Y W T )

OBS: Dflip involves a sum of such contractions

Leading energy corrections of order 1
N : E1 = 〈O|Dflip|O〉
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Search for integrability with gauge group SO(N)

We consider only the perturbation Dflip

Why interesting:
leading 1/N corrections at strong coupling only due to Dflip

valid for single trace states, not degenerate with multi-trace
states
defines a new type of spin chain interaction

How
Try to construct conserved charges Q = Q0 + 1

N Q1

0 = [D0, Q1] + [Dflip, Q0], did not succeed

Try to look for perturbed Bethe equations
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Searching for a perturbed Bethe ansatz for Dflip

Strategy

Determine analytically the leading 1
N correction for

two-excitation states by QM perturbation theory.

Construct/guess a perturbed Bethe ansatz which
reproduces these corrections.

Determine numerically the leading contribution to states
with more excitations by explicit diagonalization and check
whether the perturbed Bethe ansatz gives the correct
result.
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Leading 1
N corrections for SO(N), considering only Dflip

Two excitation states: OJ
p = Tr(XZ pXZ J−p) , J even, L = J + 2

Planar eigenstates: D0|nJ〉 = E0
n |nJ〉

|nJ〉 = 1
J+1

∑J
p=0 cos

(
πn(2p+1)

J+1

)
OJ

p , 0 ≤ n ≤ J
2

E0
n = 2 sin2

(
πn

J+1

)
Non-planar correction: En = E0

n + 1
N Eflip

n = E0
n + 1

N 〈n
J |Dflip|nJ〉

Eflip
n = − sin2(

πn
J + 1

)

− 1
J + 1

{
2 tan2(

πn
J + 1

)− 1
2

tan2(
2πn

J + 1
) cos(

2πn
J + 1

)

}
OBS: Analytical result, prediction for string theory
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Reminder: From 1 to 2 loops by perturbation of BE’s

[Beisert, Dippel.,Staudacher ’04 ]

Correction of Bethe equations (i.e. correction of momenta)(
x(uk+ i

2 )

x(uk− i
2 )

)L

=
∏M

j 6=k

(
uk−uj+i
uk−uj−i

)
x(u) = u(1− g2 1

u2 ), eip =
x(u+ i

2 )

x(u− i
2 )

, g2 =
g2

YM N
8π2

Correction of dispersion relation

E({pk}) =
∑

k 4 sin2 (pk
2

)
− 16g2 sin4 (pk

2

)
Two-excitation states with M = 2, L = J + 2: E = E0 + g2δE

δE = −16 sin4(
n π

J + 1
)︸ ︷︷ ︸

corr. of disp. rel.

−64
1

J + 1
cos2(

n π

J + 1
) sin4(

n π

J + 1
)︸ ︷︷ ︸

correction of momenta
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Leading 1
N corrections for SO(N), considering only Dflip

Eflip
n = − sin2(

πn
J + 1

)︸ ︷︷ ︸
corr. of disp. rel.?

− 1
J + 1

{
2 tan2(

πn
J + 1

)− 1
2

tan2(
2πn

J + 1
) cos(

2πn
J + 1

)

}
︸ ︷︷ ︸

correction of momenta?
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Eflip
n from perturbed Bethe equations?

Correction of dispersion relation

E({pk}) =
∑

k 2 sin2 (pk
2

)
− 1

N sin2 (pk
2

)
Correction of Bethe equations (i.e. correction of momenta)(

x(uk+ i
2 )

x(uk− i
2 )

)L

=
∏M

j 6=k

(
uk−uj+i
uk−uj−i

)
, eip =

x(u+ i
2 )

x(u− i
2 )

Parametrizing x(u) = u(1− 1
N f (u)) we find

f (u + i
2)− f (u − i

2) = −i 1
(16u3)(4u2−1)

.

Use this to make predictions for states with L = 8, M = 4

Find energy corrections by diagonalization and compare

Conclusion: Does not work.
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Eflip
n from another perturbed Bethe ansatz

Correction of dispersion relation

E({pk}) =
∑

k 2 sin2 (pk
2

)
− 1

N sin2 (pk
2

)
Correction of Bethe equations by new phase factor(

uk+ i
2

uk− i
2

)L

=
∏M

j 6=k

(
uk−uj+i
uk−uj−i

) (
1 + i

N h(uk − uj)
)
, eip =

u+ i
2

u− i
2

From our analytical solution for two-excitation states we find

h(u) = 1
2u3(u2−1)

Use this to make predictions for states with L = 8, M = 4

Find energy corrections by diagonalization and compare

Conclusion: Does not work.
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Summary and outlook

Have been able to look for integrability beyond the planar
limit by conventional methods. No sign of integrability
found (yet?)

Need to rethink the concept of integrability when going
beyond the planar limit (or forget it?)

Some analytical results on non-planar anomalous
dimensions for N = 4 SYM with gauge SO(N). Predictions
for string theory.

Dual string theory not yet studied systematically: Spinning
strings, pp-wave strings,...
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