Thursday 29 March 2018
from 10:00
to 12:00 at
C5:1007

Speaker :

Irina Galstyan (Stockholm University, Department of Physics)

Abstract :

In this thesis, we have constructed new analytical solutions for initial data of the Einstein
equations. Such solutions are valuable for gaining a better understanding of problems
involving strong gravitational and/or electromagnetic interactions in general relativity. In this
process we have examined an inhomogeneous cosmological model consisting a lattice of
regularly arranged, charged black holes with initial data corresponding to the maximum
expansion of a cosmological solution. We have also refined the method in such a way that the
values of the mass and charge of the sources can be prescribed beforehand subject to certain
constraints dictated by the field equations. Then we studied a two dimensional 'equatorial'
cross-section of the initial data space and presented the behaviour of the local curvature for
the slices of the Platonic bodies 8, 16, 24, 120 and compared black hole lattices with a
Friedmann universe of a unit radius. We see that the black hole lattice is not close to this, or
any other, round sphere as far as its local curvature is concerned. For all Platonic solutions,
the black hole regions are located where the curvature assumes its minimum value, and it
strikes the eye that they are well isolated from each other and do not distort each other
noticeably. On the other hand, we confirm that black holes themselves are remarkably round
in the strong curvature regions.