indico  First event Previous event Molecular Physics seminar Next event Last event   | view:  |  manage export to personal scheduler  | 
user login 


Relaxation Processes in Aqueous Solutions upon X-ray Exposure: Entanglement of Electronic and Nuclear Dynamics
  Molecular Physics seminar

Monday 20 March 2017
from 10:00 to 11:00
at FD41
Speaker : Isaak Unger (Uppsala University)
Abstract : About a decade ago new types of electronic non-radiative relaxation processes, involving the environment of an electronically excited or ionized monomer, have been predicted for van der Waals clusters and these were also the first systems where such processes have been detected experimentally. These new autoionization channels encompass the recombination of an electron and a hole, and the energy transfer to a neighboring atom or molecule. Two processes can be distinguished here. In the intermolecular Coulombic decay (ICD) the hole created upon ionization of a monomer is filled by a valence electron of the same species, and the energy released in this electron-hole recombination is used to ionize a neighboring species. In the electron transfer mediated decay (ETMD) the initial hole is filled by an electron from a neighboring species, and the energy released by this recombination is either used to ionize the same neighbor species, or to ionize a third monomer. In more recent experiments on liquid water it has been discovered that these non- local autoionization processes are strongly coupled with ultrafast nuclear dynamics. The core ionization initiates proton motion along a hydrogen donor-bond of the electronically excited water cation. This nuclear dynamics leads to the formation of transient cationic species where a proton is shared by two neighboring water molecules. Subsequent autoionization, either via Auger decay, ICD or ETMD, then occurs from any of such structure transients. This relaxation process is termed proton transfer mediated charge separation, PTM-CS. It has been found in a number of experiments that the probability of PTM-CS to occur depends on the hydrogen-bond strength between the core-ionized molecule and solvent molecules.

AlbaNova  | Last modified 14 March 2017 17:24  |  HELP